Understanding Slang with LLMs: Modelling Cross-Cultural Nuances through Paraphrasing.
- I. Wuraola, N. Dethlefs and D. Marciniak
- Link
Hide/Show Full Abstract
In the realm of social media discourse, the integration of slang enriches communication, reflecting the sociocultural identities of users. This study investigates the capability of large language models (LLMs) to paraphrase slang within climate-related tweets from Nigeria and the UK, with a focus on identifying emotional nuances. Using DistilRoBERTa as the baseline model, we observe its limited comprehension of slang. To improve cross-cultural understanding, we gauge the effectiveness of leading LLMs: ChatGPT 4, Gemini, and LLaMA3 in slang paraphrasing. While ChatGPT 4 and Gemini demonstrate comparable effectiveness in slang paraphrasing, LLaMA3 shows less coverage, with all LLMs exhibiting limitations in coverage, especially of Nigerian slang. Our findings underscore the necessity for culturally-sensitive LLM development in emotion classification, particularly in non-anglocentric regions.- Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP), Miami, USA.