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Abstract

Predicting the virality of online content remains challenging,
especially for culturally complex, fast-evolving memes. This
study investigates the feasibility of early prediction of meme
virality using a large-scale, cross-lingual dataset from 25 di-
verse Reddit communities. We propose a robust, data-driven
method to define virality based on a hybrid engagement score,
learning a percentile-based threshold from a chronologically
held-out training set to prevent data leakage. We evaluated
a suite of models, including Logistic Regression, XGBoost,
and a Multi-layer Perceptron (MLP), with a comprehensive,
multimodal feature set across increasing time windows (30-
420 min). Crucially, useful signals emerge quickly: our best-
performing model, XGBoost, achieves a PR-AUC > 0.52 in
just 30 minutes. Our analysis reveals a clear ”evidentiary tran-
sition,” in which the importance of the feature dynamically
shifts from the static context to the temporal dynamics as a
meme gains traction. This work establishes a robust, inter-
pretable, and practical benchmark for early virality prediction
in scenarios where full diffusion cascade data is unavailable,
contributing a novel cross-lingual dataset and a methodologi-
cally sound definition of virality. To our knowledge, this study
is the first to combine time series data with static content and
network features to predict early meme virality.

Introduction
Online platforms host a torrent of content, where memes
often serve as a primary mode of communication, cultural
commentary, and the spread of information (or misinforma-
tion)(Shifman 2014). Rapid dissemination of memes, char-
acterized by their rapid replication and wide reach, is often
described metaphorically as viral, similar to the spread of bi-
ological viruses but driven by psychological and emotional
mechanisms rather than biological mechanisms(Denisova
2020), (Klastrup 2014). Understanding which memes will
achieve widespread popularity, aka ”go viral”, is therefore
a complex but important task. It has significant implica-
tions for social media platforms, marketers, and researchers
studying the dynamics of information diffusion.

Forecasting virality early in a meme’s lifecycle (often
within minutes or hours) is particularly challenging. Sparse
initial data are a key reason. However, early forecasting
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offers substantial practical advantages. Early identification
can enable proactive content moderation, improve recom-
mendation engines, and yield insight into the initial sparks
that ignite widespread diffusion(Han, Lappas, and Sabnis
2020),(Gao et al. 2022). The unique nature of memes, their
multimodality, cultural specificity, and rapid evolution add
complexity compared to predicting the success of other on-
line content(Barnes et al. 2020),(Ling et al. 2021).

Memes often require culturally specific knowledge to cor-
rectly decode humor and meaning, with interpretations that
vary significantly between cultural groups(Guseynova et al.
2022). Previous research has explored virality prediction
using various features and models, including sophisticated
deep learning techniques(Chen et al. 2019a). Despite this,
several gaps persist. Many studies focus on single platforms
or languages. They adopt varying definitions of virality and
often lack a granular analysis of how predictive power de-
velops during those crucial initial hours. Although there are
specific studies on meme virality(Barnes et al. 2020),(Ling
et al. 2021), the establishment of a robust definition of viral-
ity and benchmarks for early prediction in diverse commu-
nities remains an open area.

This paper aims to bridge some of these gaps. We investi-
gate the following research questions:

1. Can we establish a robust, data-driven definition of vi-
rality based on a hybrid engagement score, thus avoiding
arbitrary thresholds?

2. How accurately can we predict meme virality using com-
bined engagement dynamics, network context, and static
content features observed within early time windows
(e.g. 30, 60, 120 minutes) after posting?

3. How does the predictive performance of interpretable
models and deep learning baselines change as the obser-
vation window lengthens?

4. What is the relative importance of different feature cat-
egories for early prediction? How does this importance
shift over time?

To frame our investigation, we hypothesize that the sig-
nals of meme virality are dynamic and follow a phased pro-
gression, an ”evidentiary transition” where the nature of pre-
dictive evidence shifts from static context to dynamic en-
gagement as a meme’s lifecycle unfolds.
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Figure 1: Examples of memes classified as viral (left, Drake meme template) and non-viral (right, multi-panel comic meme)
based on our data-driven definition.

To address these questions, we leverage a large-scale,
cross-lingual dataset from 25 Reddit communities. We pro-
pose and apply a novel method for defining virality based
on a hybrid score of weighted engagement and dynamic fea-
tures. We engineered a comprehensive feature set and sys-
tematically evaluated a range of models, including Logistic
Regression, XGBoost, and an MLP Neural Network, across
multiple time windows (30 to 420 minutes).

Our results show that our feature-rich approach, when
paired with a powerful model such as XGBoost, signifi-
cantly outperforms the deep learning baseline in both ac-
curacy and computational efficiency. Our analysis confirms
our hypothesis, revealing a clear temporal shift in the im-
portance of features from the initial context to the observed
dynamics of engagement. Figure 1 shows two meme exam-
ples that are classified as viral and non viral by our XGBoost
model.

This study makes several key contributions: (1) we intro-
duce a large-scale, cross-lingual dataset for meme analysis;
(2) we propose a robust, ”data-driven methodology for defin-
ing virality” that avoids arbitrary thresholds; (3)we establish
strong benchmarks for interpretable prediction, showing that
a feature-rich XGBoost model outperforms a deep learning
baseline; and (4) we provide novel insights into the time-
varying nature of meme success, confirming our ”eviden-
tiary transition” hypothesis.

Related Work
Memes serve as cultural capital within communities,
strengthening identity through correct interpretation and us-
age, and these dynamics vary significantly between cultures
(Nissenbaum and Shifman 2017). Memes propagate dif-
ferently across cultures and languages, influenced by local
socio-cultural contexts, linguistic nuances, and visual tradi-
tions(Ageev, Pushkarev, and Antonenko 2024).

Definitions and Operationalization of Virality
Virality for memes and online content has often been de-
fined through metaphors of rapid and wide dissemination

akin to a biological virus, driven by psychological and emo-
tional factors rather than biological ones(Denisova 2020),
(Rušinović 2020). Cultural replication perspectives define
memes as units of cultural information that spread quickly
and broadly online, emphasizing their capacity for rapid
replication (Rušinović 2020), (Klastrup 2014). Structural vi-
rality distinguishes between content that is spread through
large-scale broadcasts and those that is spread through mul-
tiple generations of person-to-person sharing(Goel et al.
2015). Furthermore, intertextual and vernacular definitions
highlight memes as connective media that link different
communities through shared expressive practices and cul-
tural references(Zanette, Blikstein, and Visconti 2019).

Operationalization commonly involves measurable en-
gagement metrics such as shares, likes, comments and
views(Barnes et al. 2020), (Smitha, Sendhilkumar, and Ma-
halakshmi 2018), (Klastrup 2014). Some studies incorpo-
rate user behavior intentions to predict virality in conjunc-
tion with actual behaviors(Alhabash and McAlister 2015).
Furthermore, machine learning approaches that take advan-
tage of structural analyses, particularly those that use net-
work diffusion patterns, offer predictive insights into meme
virality (Goel et al. 2015).

Early Prediction of Online Content Virality
Predicting online content virality shortly after publication
remains a challenge, but critical for proactive content man-
agement. Recent research indicates that early engagement
patterns, content characteristics, and network dynamics sig-
nificantly aid in accurate early stage predictions(Zadeh and
Sharda 2022), (Xu and Qian 2023). Temporal models such
as multivariate Hawkes processes and epidemic-type diffu-
sion models have been effective in capturing bursty, cascad-
ing user engagement, achieving notable predictive accuracy
shortly after posting(Zadeh and Sharda 2022), (Xu and Qian
2023).

Deep learning approaches, particularly those integrating
temporal, user-centric, and textual characteristics with at-
tention mechanisms, have demonstrated strong predictive



performance on platforms such as Twitter and Weibo(Chen
et al. 2019a),(Xu and Qian 2023). Node embedding algo-
rithms further enhance predictions by identifying latent node
influences, achieving significant early-stage accuracy(Lu
and Szymański 2017). Furthermore, cascade graph learning
frameworks, such as ViralGCN, effectively integrate spatial-
temporal cascade structures for accurate and interpretable
predictions, which take advantage of the precise structure of
the user-to-user sharing network ((Xu and Qian 2023).Al-
though powerful, these methods require complete knowl-
edge of the diffusion cascade, which is often unavailable in
real-time early prediction scenarios or from standard APIs.
Our work addresses a complementary and practical prob-
lem: predicting virality using only a post’s intrinsic content
and aggregate engagement dynamics, which are readily ac-
cessible without the full diffusion graph. This feature-based
approach offers a different advantage: high interpretability
for understanding the factors driving virality, as opposed to
the often black-box nature of complex GNNs.

Feature Engineering and Predictive Modeling

Advancements in feature extraction for meme virality pre-
diction, leveraging machine learning, computer vision, and
NLP, have markedly improved predictive accuracy(Barnes
et al. 2020). Static features such as visual clarity, emo-
tional expression, and concise text correlate highly with
virality(Ling et al. 2021). Dynamic features such as early
diffusion patterns, community spread, and temporal activ-
ity further enhance predictive models significantly(Weng,
Menczer, and Ahn 2013), (Hui et al. 2018), (Gao et al. 2022).
Integrating multimodal features, including visual, textual,
temporal, and network data, has enhanced the predictive pre-
cision of content virality models(Barnes et al. 2020).

Hierarchical fusion models merging separately extracted
visual (e.g. ResNet), textual (e.g. GloVe and LSTM),
and attribute-based features significantly outperform single-
modality methods(Wang et al. 2023). Although historical
approaches relied on engineered visual features(Lv et al.
2017; Chen et al. 2019b), current work frequently employs
large pre-trained vision language models (VLMs) such as
CLIP for tasks ranging from harmful content detection to
sentiment analysis(Kumar and Nandakumar 2022; Sultan
et al. 2024) Complex machine learning models such as
XGBoost, LightGBM, and deep neural networks generally
achieve higher predictive accuracy (AUC 0.88), though sim-
pler, interpretable models such as logistic regression and
random forests still provide valuable insights into feature
importance and model behavior(Barnes et al. 2020), (Tsai
and Wu 2022), (Kalra et al. 2022).

Virality prediction datasets are inherently imbalanced
due to the rarity of viral content, requiring specialized ap-
proaches. Techniques such as oversampling (SMOTE), un-
dersampling, ensemble methods, and cost-sensitive learn-
ing significantly improve model performance by balancing
datasets and reducing false negatives(Kubus 2020), (Van
Den Goorbergh et al. 2022), (Kala et al. 2024).

Research Gaps and Our Contribution
This review highlights several gaps our work aims to ad-
dress. Firstly, integrating insights from large, complex mod-
els (like LLMs or VLMs) into practical, efficient prediction
systems remains challenging. Secondly, there is a need for
more large-scale, cross-lingual benchmarks for meme viral-
ity prediction. Third, while temporal dynamics is known to
be important, a systematic analysis of how feature impor-
tance shifts across early time windows is less common. Fi-
nally, many studies adopt simple arbitrarily threshold-based
definitions of virality without accounting for the dynamic
nature of virality in their experimental design.

Our study makes several key contributions to address
these gaps. We introduce a large-scale, cross-lingual dataset
with high-resolution temporal data. Crucially, we tackle
the definitional challenge by proposing and implementing
a novel data-driven methodology to define virality that is
both robust and methodologically sound, learning its param-
eters from a training set held to prevent data leakage. We
then systematically evaluate a range of models, from inter-
pretable linear models to strong baselines such as XGBoost
and an MLP neural network, using a comprehensive multi-
modal feature set. Finally, our analysis moves beyond sim-
ple prediction to investigate the temporal evolution of pre-
dictive signals, confirming our hypothesis of an ”evidentiary
transition” in the nature of viral signals over a meme’s early
lifecycle.

Data and Methodology
This section details our data collection, preprocessing, and
the rigorous methodological framework used for predictive
modeling. We place a strong emphasis on preventing data
leakage to ensure the validity of our results.

Dataset Construction and Scope
A dataset that captures the dynamics of cross-lingual memes
is the foundation of this research. We collected it via the
official Reddit API (PRAW) between March 21 and June
03, 2025. (Figure 2).

Figure 2: Total engagement metrics of all the collected
memes over the tracking time.

For each meme post (j), we gather standard metadata (
e.g. title, anonymized author, timestamp, URL of the me-
dia) and the subreddit context (subscriber count Ni). A key



element was tracking engagement metrics: score s(t), com-
ments c(t), crossposts x(t). We tracked these with high tem-
poral resolution via dynamic sampling (5-min intervals ini-
tially, decreasing frequency later). This strategy helped us
track memes life trajectory and spread across the Reddit
internal ranking categories, which is crucial for early pre-
diction, while also capturing longer-term trends. The final
recorded engagement metrics informed how we defined the
target variable.

To ensure diversity, we collected data from 25 distinct
meme-centric subreddits across eight language groups. En-
glish, German, Turkish, Nordic (Swedish, Danish, Norwe-
gian), French, Spanish (including Latin American varia-
tions), Portuguese (including Brazilian Portuguese) and Ital-
ian. Detailed information on these subreddits, including their
subscriber counts and representation in our dataset, is pro-
vided in Table 7 in the appendix. Table 1 shows the distribu-
tion of media types between language groups after filtering.

Table 1: Distribution of Media Types Across Language
Groups. Note: These counts represent the distribution after
the final filtering step (e.g., requiring > 24h tracking).

Language Image Video GIF Text Audio Total

English 27985 2802 755 63 160 31765
German 2345 85 32 47 13 2522
Turkish 610 241 11 118 50 1030
Nordic 618 71 10 183 31 913
French 508 49 9 42 8 616
Spanish 370 183 5 21 16 595
Portuguese 199 58 0 3 1 261
Italian 70 25 1 1 0 97

Total 32705 3514 823 478 279 37799

Standard data cleaning removed moderated posts,posts
without a valid URL and posts that did not have at least
24 hours of continuous engagement tracking. Our process
adhered to Reddit’s Terms of Use, ensured user anonymity,
and received faculty approval for responsible conduct. We
initially collected 71,040 unique meme posts through the
Reddit API. After applying quality filters (removing mod-
erated posts, posts without a media link, and posts with less
than 24 hours of continuous engagement tracking), our fi-
nal dataset contains 37,799 unique meme posts with more
than 1 million tracking points.

Target Variable Definition: A Data-Driven
Approach
To prevent data leakage, our definition of virality was de-
rived exclusively from the training portion of our dataset and
then applied to the held-out test set. Instead of using arbi-
trary thresholds, we developed a data-driven approach that
reflects both the volume and dynamics of engagement. This
involved the following steps, performed only on the training
data:

1. Normalization by Community Size: We normalized the
raw metrics (k ∈ {s, c, x}) for each post by its subreddit
subscriber count Ni. The 99th percentile cap (P99) used

to mitigate outliers was calculated from the distribution
of training data.

mj,k(t) = min

(
kj(t)

Ni
× 100000, P99 train

(
k

N
× 100000

))
(1)

2. Hybrid Engagement Weighting: To estimate the rel-
ative importance of different engagement signals, we
trained an auxiliary Random Forest model on the train-
ing set. This model used both normalized volume metrics
(score, comments, crossposts) and key dynamic features
(e.g., peak velocity, acceleration, time to takeoff) from
early time windows to predict a preliminary target (e.g
top 5% by unweighted final sum). The importance of the
resulting features, averaged between windows, yielded
a set of hybrid weights (βk) for each feature k. This
data-driven method confirmed that the normalized score
(βscore = 1.0) and comments (βcomments = 0.44) were
the most important volume signals, while dynamic fea-
tures such as peak velocity (βpeak vel = 0.14) also con-
tributed significantly.

3. Final Hybrid Score: We calculated a composite Hybrid
Score (HSj,final) for each post using its final engage-
ment features (fj,k) and the derived hybrid weights (βk):

HSj,final =
∑

k∈features

βk · fj,k (2)

4. Threshold Identification: To objectively define our viral
class, we applied K-Means clustering (MacQueen 1967)
(k = 2) to the (HSj,final) distribution. The resulting
boundary (τ ≈ 300.27) served as our data-driven thresh-
old (Figure 3). Clustering provided a natural separation.

Figure 3: Distribution of Final Hybrid Scores across the
training set posts. The vertical line indicates the data-driven
virality threshold identified by K-Means.

5. Final Target Variable Assignment: We used this single
threshold, τtrain, to assign the binary target is viral
to all posts in both the training and test sets.

is viralj =

{
1 if HSj,final ≥ τtrain
0 if HSj,final < τtrain

(3)

This procedure ensures that no information from the test set
influences the definition of virality, making our evaluation a
true simulation of real-world prediction.



Figure 4: Viral memes lifespan trajectories. Top-left: Indi-
vidual engagement curves for all viral posts. Top-right: Av-
erage viral growth curve. Bottom-left: Distribution of viral
take-off times. Bottom-right: Distribution of time to reach
peak engagement velocity.

Table 2: Example Features by Modality.

Modality Example Feature(s)

Temporal Hour Of Day, Peak Velocity (Win-
dow), Burst Count (Window)

Network Category Transitions, Time To Top,
Author Total Karma

Visual Key Objects, Facial Expression,
Template Name, Panels

Textual Text Sentiment, Title Word Count,
Text Language, Text Tone

Contextual Meme Template, Target Audience,
Offensiveness

Exploratory Analysis Findings
Initial exploration of the full dataset confirmed its multi-
modal nature and revealed interesting patterns. Static im-
ages were prevalent, while text-based memes were common
in specific language groups (Table 1). as illustrated in the
appendix (Figures 7 through 16), characteristic distributions
and virality rates vary significantly between language groups
and over time, underscoring the need for context-sensitive
models. We analyze engagement trajectories for posts ulti-
mately classified as viral, revealing consistent patterns (Fig-
ure 4). Viral memes typically showed a rapid take-off (mean:
29 min), but reached maximum engagement velocity much
later (mean: 7.6 hours), suggesting a window for early pre-
diction. Our final definition of virality classified ≈ 4. 8% of
posts as viral, confirming a significant class imbalance that
guided our choice of models and metrics.

Feature Engineering
We engineered features that capture dynamic engagement
and static characteristics, ensuring that all features for a time
window W used only data available up to W . All feature

scaling and normalization parameters were fitted to the train-
ing data and then used to transform the test data. The final
characteristics are divided into several groups of modality
(Table 2).
• Temporal Dynamics: Features summarizing participa-

tion up to W , including aggregates, counts, and estimates
of velocity (v(t)) and acceleration (a(t)). Figure 5 illus-
trates the average dynamic trajectories.

• Network Context: Static author (karma, age) and char-
acteristics of community structure (e.g., category transi-
tions).

• LLM-Derived Static Features: To extract nuanced se-
mantic information, we used a multimodal LLM (Gem-
ini 2.0 Flash Thinking (Gemini Team and Google 2023))
to generate structured JSON covering visuals (e.g. object
detection), text (e.g. OCR) and context (e.g. cultural ref-
erences).

Crucially, all features were calculated so that for any given
post and time window, only data available up to that point
from that same post were used. No information from the test
set or from future states of any post was used during feature
extraction.

Experimental Setup
This section details our experimental setup, including our
rigorous data-splitting protocol, the models evaluated, and
the metrics used.

Data Splitting and Experimental Integrity: To ensure
that our models are evaluated on truly unseen data, we split
this filtered dataset chronologically. All posts from March
21 to May 15, 2025 (approximately 80% of the data) were
used for the training set, and posts from May 16 to June 3
(approximately 20%) formed the held-out test set (Table 3).
This chronological split prevents data leakage and ensures a
realistic evaluation scenario in which models are tested on
future data relative to their training period.

Table 3: Chronological Split of the Final Filtered Dataset

Split Date Range Count Percent

Training Set Mar 21–May 15, 2025 30,239 80.0%
Test Set May 16–Jun 3, 2025 7,560 20.0%

Total Mar 21–Jun 3, 2025 37,799 100%

Preprocessing Pipeline: For each time window, we con-
structed a feature set that combines static attributes with
the dynamic features available up to that point. We used a
robust preprocessing pipeline where numeric features were
imputed with the median and standardized, while categorical
features were imputed with a ’missing’ value, and then one
hot encoded. All imputation and scaling parameters were
learned from the training data only.

Handling Class Imbalance: Given the significant class
imbalance inherent in virality prediction (≈4.8% viral
posts), we address this challenge by using class weights in
our models to increase the penalty for misclassifying the mi-
nority (viral) class.



Figure 5: Average normalized engagement trajectories (Score, Comments, Crossposts) for posts classified as Viral vs. Non-Viral
over the first 500 minutes. Viral posts show distinctly higher and faster-rising engagement across all metrics.

Models Evaluated: We evaluated three machine learning
models: Logistic regression (LR) as a strong linear baseline,
XGBoost as a state-of-the-art tree-based model, and a mul-
tilayer perceptron (MLP) neural network as a deep learning
baseline. The hyperparameter configurations for each model
are detailed in Table 4.
• Logistic Regression (LR): A linear model chosen for its

high interpretability.
• XGBoost: A powerful and highly efficient gradient boost

implementation, serving as a strong tree-based baseline.
• MLP Neural Network: A Multi-layer Perceptron with

two hidden layers, serving as a standard deep learning
baseline.

Table 4: Model configurations and hyperparameters

Model Hyperparameter Configuration

Logistic Regression penalty=’l2’
C=1.0
solver=’liblinear’
class weight=’balanced’
random state=42

XGBoost scale pos weight=#neg/#pos
eval metric=’logloss’
use label encoder=False
random state=42
n jobs=-1

MLP Neural Network hidden layer sizes=(100, 50)
activation=’relu’
solver=’adam’
max iter=500
early stopping=True
random state=42

Evaluation Metrics
To obtain a stable performance estimate, we report the re-
sults of a five-fold stratified cross-validation performed on

the training set. Our primary metric is the area under the
precision recall curve (PR AUC), which is well suited for
unbalanced classification tasks (Davis and Goadrich 2006).
We also report the ROC AUC and the F1 score for a com-
plete assessment. The final best-performing model for each
time window is then evaluated in the held-out test set to re-
port the final generalization performance.

Experiments and Results
This section details the performance of our predictive mod-
els, reports the findings of our feature ablation studies, and
analyzes the evolution of feature importance over time. All
results reported here were generated using the strict split test
train and the cross-validation procedure defined in the earlier
steps to ensure methodological rigor.

Main Results: Performance Across Time Windows
Table 5 summarizes the performance of our three models
(LR, XGBoost, and the MLP Neural Network baseline) in
increasing observation windows. The results demonstrate a
clear and consistent trend: as more engagement data be-
comes available over time, the predictive power of all mod-
els increases significantly.

XGBoost emerges as the strongest performer in all time
windows and metrics, highlighting the effectiveness of gra-
dient boosting for this task. It achieves a PR-AUC of 0.52
in just 30 minutes, rising to a robust 0.82 after 420 min-
utes. The MLP neural network neural network also con-
sistently outperforms the simpler Logistic Regression base-
line, indicating that nonlinear relationships are crucial to ac-
curately predict virality. Furthermore, the duration column
highlights the computational efficiency of XGBoost, which
consistently provides the best performance in the shortest
amount of time.

Ablation Study: Importance of Feature Modalities
To isolate the contribution of different categories of features,
we performed an ablation study on our best-performing



Table 5: Test Set Performance of LR, XGBoost, and MLP Neural NetworkBaseline Across Time Windows. The table highlights
the trade-off between predictive power (PR AUC) and computational cost (Duration). Best performance for each metric is in
bold.

Time Window Model Type PR AUC ROC AUC F1 Score Duration (s)
(min)

30 Logistic Regression 0.35 0.85 0.36 16.95
30 MLP Neural Network 0.41 0.86 0.24 1121.21
30 XGBoost 0.52 0.93 0.46 7.05

60 Logistic Regression 0.44 0.86 0.39 17.38
60 MLP Neural Network 0.47 0.87 0.35 1142.22
60 XGBoost 0.58 0.94 0.49 7.04

120 Logistic Regression 0.54 0.88 0.47 16.95
120 MLP Neural Network 0.57 0.89 0.51 1124.60
120 XGBoost 0.65 0.95 0.54 7.47

180 Logistic Regression 0.61 0.90 0.52 13.78
180 MLP Neural Network 0.63 0.91 0.54 1385.64
180 XGBoost 0.70 0.95 0.58 7.19

240 Logistic Regression 0.66 0.91 0.57 14.35
240 MLP Neural Network 0.67 0.92 0.59 1459.23
240 XGBoost 0.75 0.96 0.63 7.21

300 Logistic Regression 0.70 0.92 0.60 17.44
300 MLP Neural Network 0.71 0.932 0.63 1132.59
300 XGBoost 0.78 0.96 0.65 7.35

360 Logistic Regression 0.74 0.93 0.61 17.58
360 MLP Neural Network 0.73 0.93 0.66 1139.11
360 XGBoost 0.80 0.97 0.68 7.65

420 Logistic Regression 0.76 0.94 0.62 19.40
420 MLP Neural Network 0.76 0.94 0.68 1097.85
420 XGBoost 0.82 0.97 0.69 7.55

Table 6: XGBoost Ablation Study Test Set Results (120-Min
Window).

Ablation Scenario (XGBoost) PR AUC ROC AUC

Baseline (All Features) 0.65 0.951
Exclude Contextual (LLM) 0.66 0.95
Exclude Visual (LLM) 0.65 0.94
Exclude Textual (LLM) 0.63 0.94
Exclude Network 0.56 0.90
Exclude Temporal 0.43 0.92

model, XGBoost. Although we evaluated a MLP neural net-
work baseline, its consistently lower performance across all
time windows (see Table 5) makes interpreting its impor-
tance of features less reliable to establish a general hierarchy
of predictive signals. Therefore, we focus the ablation anal-
ysis on the XGBoost model to provide the clearest insight
into the factors driving the successful prediction.

For the 120-minute window, we systematically trained the
model, while excluding one feature modality at a time. Ta-
ble 6 shows the results. The findings confirm the critical im-
portance of temporal and network characteristics. Exclud-
ing temporal features caused the largest drop in PR-AUC
(from 0.65 to 0.43), demonstrating that the early dynamic

trajectory of a meme is the single most important predic-
tor. Removing network features also significantly degraded
performance (PR-AUC drop to 0.56), emphasizing the pre-
dictive power of the initial author and community context. In
contrast, removing the LLM-derived static features (Visual,
Textual, Contextual) had a much smaller impact, suggesting
that they provide valuable but less critical context compared
to the dynamic and network signals.

Feature Importance Analysis Over Time
We further examine how feature importance evolves us-
ing feature importance from the XGBoost models across
time windows. Figure 6 reveals a more nuanced temporal
pattern than a simple linear shift. In the earliest windows
(30-120 min), static features related to the post’s content
and context, specifically ’Textual’ and ’Network’ features,
are highly prominent. This suggests that initial predictions
rely heavily on the meme’s textual content and the author’s
standing.

As more engagement data accumulate in the middle win-
dows (180-300 min), the ’Temporal’ features, which capture
the dynamics of user interaction like velocity and accelera-
tion, surge in importance, becoming the dominant predictive
modality. This indicates a transition from predicting based
on what the content is to predicting based on how it is behav-



Figure 6: Evolution of feature modality importance (count
in Top 30 features) for XGBoost models trained at different
time windows.

ing. In the later stages (360-420 min), we observe a resur-
gence in the importance of ’Visual’ and ’Textual’ features,
suggesting that for a meme to have long-term viral potential,
the intrinsic quality of its visual and textual content becomes
critical again, complementing the established dynamic tra-
jectory.

Conclusion and Discussion
Our results confirm that the early prediction of meme virality
is not only feasible but can be achieved with a high degree of
accuracy. Using a robust methodologically robust leak-free
pipeline, our analysis shows that performance improves sub-
stantially as more engagement data accumulate (Table 5).
Our strongest model, XGBoost, consistently outperforms
both a standard deep learning baseline (MLP) and a sim-
pler linear model, suggesting that gradient-boosted trees are
particularly well-suited for this feature-rich prediction task.
Meaningful predictions (PR AUC > 0.52) are possible in
30 minutes, becoming highly reliable (PR AUC > 0.82) by
the 7-hour mark. Although PR AUC is our main metric due
to class imbalance, ROC AUC scores achieved 0.92 even
without temporal features (Table 6) compare favorably with
previous work focusing mainly on static features (e.g. 0.68-
0.87 (Barnes et al. 2020),(Ling et al. 2021). Of course, direct
comparison is limited by differing datasets and methodolo-
gies.

A key contribution of this work is insight into the time-
varying nature of predictive signals. Our feature importance
analysis (Figure 6) reveals a clear ”evidentiary transition” in
the way virality manifests. We observe a phased progression:
1. The Seeding Phase (0-120 mins): Early predictability

is dominated by static context, namely Network and Tex-
tual features. This highlights the initial importance of the
author’s reputation and the meme’s textual framing.

2. The Ignition Phase (180-300 mins): As engagement
data cumuluate, a distinct shift occurs and dynamic Tem-
poral features become paramount. This reflects the estab-
lishment of a positive feedback loop where the meme’s

observed performance is the strongest predictor.
3. The Sustain Phase (360+ mins): In later stages, the

intrinsic quality of the content reemerges as critical,
with Visual and Textual features regaining prominence to
maintain long-term momentum.

This dynamic interplay is further supported by our abla-
tion study (Table 6), which confirms that temporal and net-
work characteristics are the most critical components for
early prediction.

In conclusion, this study makes several key contribu-
tions: (1) we introduce a large-scale, cross-lingual dataset
for meme analysis; (2) we propose a robust, ”data-driven
methodology for defining virality” that avoids arbitrary
thresholds; (3) we establish strong benchmarks for inter-
pretable prediction, showing that a feature-rich XGBoost
model outperforms a deep learning baseline in both per-
formance and efficiency; and (4) we provide novel insights
into the time-varying nature of meme success, confirming
our ”evidentiary transition” hypothesis. It is also important
to note that our approach is tailored to predicting virality
from a post’s intrinsic features and temporal engagement,
a common scenario where the user-to-user diffusion graphs
required by models like ViralGCN are unavailable, thus jus-
tifying our feature-based methodology.

Limitations
The findings of this study are primarily limited by the scope
of the dataset; Reddit - during March-June 2025. Validation
across platforms and timeframes is certainly needed. In ad-
dition, while diverse, the data set exhibits imbalances. Fewer
examples exist for some languages (e.g., Italian, Portuguese)
and media types (e.g., Audio, Text; see Table 1). This poten-
tially limits the generalizability of findings specific to these
minority categories. We used an advanced LLM as a feature
extraction tool based on its known capabilities.

However, this study did not perform a direct performance
comparison against baselines of non-LLM static character-
istics. Quantifying the specific contribution of these LLM-
derived features relative to simpler alternatives is crucial fu-
ture work. Reliance on a specific LLM also brings consider-
ations of availability, cost (though there is a free tier (Gemini
Team and Google 2023)) and potential biases. Methodolog-
ical limitations include the potential Gini importance bias
and the specific operationalization of virality we chose. Eth-
ically, the potential for misuse of virality prediction (for ex-
ample, for manipulation or amplifying harmful content) war-
rants careful consideration. Potential biases encoded within
the data or models also need attention. Methodologically,
while we benchmark against strong baselines (XGBoost,
MLP), we did not implement more complex, graph-based
architectures like GNNs, as our dataset is not structured as a
diffusion cascade.

Future work should focus on refining LLM integra-
tion (e.g., prompt optimization) and exploring advanced
model architectures (perhaps time-sensitive attention or
graph models). A key priority remains to rigorously compare
LLM-derived features against computationally cheaper al-
ternatives (such as CLIP or standard OCR) to establish their



cost-benefit relationship. Targeted data collection for under-
represented languages and media types could enable a more
robust analysis of these specific categories.

Crucially, future research should explicitly address fair-
ness and bias mitigation in prediction models. Considering
the broader social impacts and ethical guidelines for the de-
ployment of such systems is also essential.

Our work focuses primarily on predictive accuracy and
does not explicitly model the real-world cost of misclassifi-
cation. The implications of a false positive and a false nega-
tive can be vastly different and are highly dependent on the
application scenario. For example:

In a content moderation context, a false negative (failing
to identify a truly viral piece of harmful misinformation)
could have severe societal consequences by allowing it to
spread unchecked. In this case, high recall is paramount.

Conversely, in a recommendation system, a false positive
(promoting a non-viral meme to a large audience) might in-
cur an opportunity cost and degrade user experience. Here,
high precision would be preferred.

Our current model, with its fixed decision threshold, does
not optimize for these asymmetric costs. A valuable direc-
tion for future work is to move beyond a single accuracy
metric and incorporate cost-sensitive learning techniques,
allowing the decision threshold to be tuned for specific
downstream applications and their unique ethical and prac-
tical requirements.

Data and Code Availability
The dataset, the code, and the specific LLM prompt used to
extract the characteristics are available at https://github.com/
sdogan13/Meme-Analysis-and-Virality-Prediction.
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Appendix
This section details the subreddit information, static and
dynamic features used in the modality-specific analysis,
grouped by their conceptual modality. Visual, contextual,
and textual characteristics were derived using the LLM
prompting methodology described in Section and summa-
rized in Appendix 14.

Subreddit Distributiton

Table 7: Detailed Subreddit Distribution by post count

Subreddit Post Count Percentage (%) Subscribers

memes 8,745 23.41 35,495,085
formuladank 6,075 16.26 1,004,277
shitposting 4,463 11.95 2,623,506
antimeme 3,677 9.84 1,031,079
historymemes 2,174 5.82 12,533,773
me irl 2,061 5.52 7,709,088
dankmemes 1,927 5.16 5,876,517
lotrmemes 1,090 2.92 2,975,156
bonehurtingjuice 756 2.02 960,919
bikinibottomtwitter 400 1.07 4,724,787
surrealmemes 211 0.56 905,018
raimimemes 173 0.46 474,809
wholesomemes 4 0.01 699,206
wholesomememes 1 0.0 18,334,345
rance 524 1.4 705,861
moi dlvv 3 0.01 49,257
ich iel 2,652 7.1 2,017,877
okbrudimongo 602 1.61 102,674
deutschememes 265 0.71 263,213
unket 691 1.85 111,879
dankmark 118 0.32 82,635
eu nvr 105 0.28 882,683
dankgentina 483 1.29 184,365
yo elvr 1 0.0 23,212
burdurland 153 0.41 503,976

Feature Definitions by Modality

Exploratory Analysis of Virality Rates

Figure 7: Virality Rate per Language Group.

Table 8: Contextual Features (LLM-Derived).

Contextual Features (LLM-Derived)
Feature Name Data Type

Offensiveness (Is Offensive,
Type)

bool, object

Cultural Reference Type object
Primary Topic object
Target Audience object
Meme Type object
Analyzed Media Type object
Title Media Coherence object
Controversy (Score, Type) int64, object
Emotional Resonance object
Humor Type object
Insight Commentary Score int64
Novelty Uniqueness Score int64
Profanity Level object
Relatability Score int64
Format/Presentation (Effort,
Simplicity, Appeal, Clarity)

object, int64

Social Context (Platform,
Shareability, Currency,
Trend)

object

Table 9: Network Features.

Network Features
Feature Name Data Type

Author Account Age Days float64
Author Is Premium int64
Author Karma Per Day float64
Author Total Karma int64
Category Sequence Full object
Category Stability Full float64
Category Transitions Full int64
Pct Time In New Full float64
Progression Pattern Full object
Promotion Demotion Ratio
Full

float64

Time To Hot Full float64
Time To Rising Full float64
Time To Top Full float64
Unique Categories Full int64

Table 10: Textual Features (LLM-Derived).

Textual Features (LLM-Derived)
Feature Name Data Type

Text Language object
Text Sentiment Overall object
Text Word Count float64
Text Image Alignment object
Text Tone object
Is Title Present bool
Title Word Count int64
Title Sentiment object



Table 11: Visual Features (LLM-Derived).

Visual Features (LLM-Derived)
Feature Group / Name Data Type

Media Type object
Image Dimensions (Height,
Width)

float64

Key Objects Primary object
Composition object
Panels object
Template Is Variant bool
Template Name object
Facial Expression Is Face bool
Facial Expression Primary
Emotion

object

Identified Person Is Celebrity bool
Identified Person Is Character bool
Identified Character Name object
Identified Person Celebrity
Name

object

Table 12: Temporal Features (Submission Time & Dynam-
ics).

Temporal Features (Submission Time & Dynamics)
Feature Name Data Type

Day Of Week int64
Hour Of Day int64
Is Weekend int64
Burst Count (Window) float64
Engagement AUC (Window) float64
Min Acceleration (Window) float64
Momentum Ratio (Window) float64
Norm. Num Comments (Window) float64
Norm. Score (Window) float64
Pct Time In Hot (Window) float64
Pct Time In New (Window) float64
Pct Time In Rising (Window) float64
Pct Time In Top (Window) float64
Peak Acceleration (Window) float64
Peak Velocity (Window) float64
Takeoff Velocity (Window) float64
Category Snapshot (Window) object
First Comm Min (Window) float64
First Cross Min (Window) float64
First Vote Min (Window) float64
Half Life Minutes (Window) float64
Minutes (Window Duration) float64
Norm. Num Crossposts (Window) float64
Slope 10min (Window) float64
Slope 5min (Window) float64
Time To Peak (Window) float64
Time To Takeoff (Window) float64
Timing Entropy (Window) float64
Transitions Within (Window) int64
Time In Hot (Window) float64
Time In New (Window) float64
Time In Rising (Window) float64
Time In Top (Window) float64
Upvote Ratio (Window) float64

Figure 8: Post Count and Virality Rate by Hour Of Day
(UTC).

Figure 9: Post Count and Virality Rate by Day Of Week.

Figure 10: Virality Rate by Character Group.

Figure 11: Virality Rate by Template Group.



Figure 12: Virality Rate by Topic Group.

Figure 13: Virality Rate by Broad Meme Type
(Count >= 10).

Figure 14: Virality Rate by Media Type.

LLM Prompt Summary for Feature Extraction
The following summarizes the core instructions provided to
the Gemini 2.0 Flash Thinking model via the API to extract
structured visual, contextual, and textual characteristics, as
described in Section . The complete prompt, including the
detailed JSON structure and specific categorical/ordinal

options for the ‘virality factors‘, is available in the project’s
GitHub repository (see the Data and Code Availability

section). System Role: Professional meme analyst
specializing in identifying factors contributing to viral
potential on platforms such as Reddit. Task: Analyze

provided media file and title to extract descriptive
characteristics and evaluate potential virality drivers using
only the specified categorical / ordinal options. Analysis

Steps:
• Identify key visual elements (people, objects, symbols).
• Note the hierarchy and placement of the text.
• Recognize known meme templates.
• For video/GIF, extract key frames.
• For audio, evaluate the tone.
• Examine textual and visual references for cultural cues.
• Describe the layout and color composition.
• Analyze the language and references for the target audi-

ence.
• Evaluate any offensive content.
• Assess the severity and category of any offensive content.
• Check the coherence between the post title and the me-

dia.
• Fill in the ’virality factors’ section by selecting the single

best fit from the provided options for each factor (using
’unknown’ or ’none’ if applicable).



SHAP Feature Importance Analysis
To complement the Gini importance analysis and provide
further information on the contributions of characteristics,

we conducted a SHAP analysis (SHapley Additive
Explanations) for the Random Forest model. SHAP values

quantify the marginal contribution of each feature to the
prediction for each instance. Figure 15 shows the detailed

summary graph of the beeswarm for the full baseline model
(420 minute window), illustrating both the magnitude and

direction of impact of the top features in all the test
instances.

Figure 15: SHAP Detailed Summary Plot (Beeswarm) for
RF Full Baseline Model (Top 30 Features).



Feature Distribution of Viral Memes by Language

Figure 16: Distribution of selected static features (Meme Type, Cultural Reference Type, Target Audience, Offense Type, Is
Offensive, Is Template) across different language groups, highlighting cross-cultural variations.


